l	
1	Roll XX1
2	ADD A,B
3	XCHG B,A
4	MOV A,[ADDRESS]
5	OUT A
6	INC A
7	RCR A
8	MOV A,BYTE
9	JNZ ADDRESS
10	PUSH B
11	POP B
12	CALL ADDRESS
13	RET
14	OR A,[ADDRESS]
15	XOR A,[ADDRESS]
16	HLT

Roll XX2	
1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	MOV B,BYTE
5	RCR B
6	JMP ADDRESS
7	JNZ ADDRESS
8	PUSHF
9	OR A,BYTE
10	PUSH B
11	POP B
12	OUT A
13	CALL ADDRESS
14	RET
15	AND 16
	A,[ADDRESS]

Roll XX3

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	IN A
5	OUT A
6	INC A
7	MOV A,[ADDRESS]
8	MOV A,BYTE
9	JZ ADDRESS
10	PUSH B
11	POP B
12	RCL B
13	CALL ADDRESS
14	RET
15	AND A,[ADDRESS]
16	HLT

Roll XX4

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	MOV B,[ADDRESS]
5	OUT B
6	JNZ ADDRESS
7	RCR A
8	MOV B,BYTE
9	JMP ADDRESS
10	PUSH A
11	POP A
12	CALL ADDRESS
13	RET
14	XOR A,[ADDRESS]
15	TEST B,BYTE
16	HLT

	Roll XX5
1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	IN A
5	RCR B
6	DEC B
7	JZ ADDRESS
8	JMP ADDRESS
9	OR B,BYTE
10	PUSH B
11	POP B
12	OUT A
13	CALL ADDRESS
14	RET
15	AND A,[ADDRESS]
16	HLT

Roll XX6

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	RCL A
5	OUT A
6	INC A
7	MOV B,[ADDRESS]
8	MOV B,BYTE
9	JMP ADDRESS
10	PUSH B
11	POP B
12	NOT A
13	CALL ADDRESS
14	RET
15	TEST A,B
16	HLT

Roll XX7

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	MOV A,[ADDRESS]
5	MOV [ADDRESS],B
6	OUT A
7	TEST B,A
8	OR B,[ADDRESS]
9	JNZ ADDRESS
10	JMP ADDRESS
11	PUSHF
12	PUSH A
13	POP A
14	CALL ADDRESS
15	RET
16	HLT

Roll XX0

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	MOV A,[ADDRESS]
5	RCR B
6	IN A
7	OUT A
8	AND A,B
9	TEST B,BYTE
10	OR B,BYTE
11	XOR A,[ADDRESS]
12	PUSH B
13	POP B
14	CALL ADDRESS
15	RET
16	HLT

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	RCL B
5	SHR A
6	MOV [ADDRESS],A
7	XOR A,[ADDRESS]
8	AND A,B
9	OR B,[ADDRESS]
10	OUT A
11	JZ ADDRESS
12	PUSH B
13	POP B
14	CALL ADDRESS
15	RET
16	HLT

Roll XX8

Roll XX9

1	ADD A,B
2	SUB A,B
3	XCHG B,A
4	MOV A,[ADDRESS]
5	MOV [ADDRESS],B
6	JNZ ADDRESS
7	XOR A,[ADDRESS]
8	PUSHF
9	IN B
10	OUT A
11	JMP ADDRESS
12	PUSH A
13	POP A
14	CALL ADDRESS
15	RET
16	HLT

Note:

Code RAM size: 1024x8
Data RAM size: 1024x8
Input port consists of 8 switches.
Output port consists of 8 LEDs.
Code segment and Data Segment should be separate.

To do:

1. Create an assembler to convert assembly code into machine code (.hex or .bin format)
2. Using simulation software, load the machine code file in a ROM model.
3. Design circuit to copy the content of ROM into appropriate RAM model upon power up
4. Design the 4 bit PC using the RAM models as code and data memory

Bonus points:
Implementation of Pipelining would be favorable for bonus.
Any special/innovative feature that you can implement.

Assignment Grading: You will need to explain the architecture of your design, explain if you have implemented any special / innovative features, and also run a given program.

Individual Submission of Assignment is required. Any sort of Plagiarism is strictly prohibited, and any detected plagiarism would be severely dealt with.

